Gauhati University B.Com 4th Semester (Sem-4/CBCS) HC 2 (BMT)

2022

COMMERCE

(Honours)

Paper: COM-HC-4026

(Business Mathematics)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions as directed: (any ten) $1 \times 10 = 10$

- (i) Define a diagonal matrix.
- (ii) Find the value of x, if

$$\begin{vmatrix} 4 & 5 \\ x & 9 \end{vmatrix} = -4$$

- (iii) If $f(x) = 2x^2 + 3x + 2$, find the value of f(-3),
- (iv) Evaluate:

$$\int_1^3 \frac{1}{x} dx$$

- (v) Define a sinking fund.
- (vi)10 % profit on S.P. = ___% profit on C.P. (Fill in the blank)

(vii) Write True or False:

Every diagonal matrix is a scalar matrix.

- (viii) Define trade discount.
- (ix) If is the first term and is the common difference of an A.P. series, then the th term is _____ (Fill in the blank)
- (x) Find the cofactor of -1 in the following determinant:

$$\begin{bmatrix} 2 & -3 & 5 \\ 5 & 2 & 7 \\ -4 & 2 & -1 \end{bmatrix}$$

- (xi) What is the difference between simple interest and compound interest?
- (xii) Find the fourth proportional to 9 m, 17 m and ₹36.
- (xiii) Define 'objective function' associated with linear programming.

(xiv) $\frac{d}{dx}$ (TC) = ? where x denote the volume of output (Fill in the blank)

$$(xv) \qquad \frac{d}{dx}\sqrt{x^2+5} = ? ?$$

2. Answer the following questions: (any five) $2 \times 5 = 10$

(i)

If
$$A = \begin{bmatrix} 2 & 0 & 4 \\ 6 & 2 & 8 \\ 2 & 4 & 6 \end{bmatrix}, B = \begin{bmatrix} 8 & 4 & -2 \\ 0 & -2 & 0 \\ 2 & 2 & 6 \end{bmatrix}, \text{ find }$$

the matrix 3A + 2B.

- (ii) If $F(X) = \frac{1}{1+X}$ then find $f\{f(x)\}$.
- (iii) Which term of the series 10,4,-2,-8,... is -104?
- (iv) Find the compound ratio of the following:

- (v) The ratio between two numbers is 2:7. If each of them is increased by 14, the ratio between the new numbers obtained become 4:7. Find the original numbers.
- (vi) Define
- (a) Immediate annuity
- (b) Perpetual annuity
- (vii) Mr. bought a cycle for ₹ 2,000 and sold it for ₹ 1,800 due to some damage. Find his profit or loss per cent.
- (viii) At what rate of simple interest per annum will ₹ 1,500 produce the same interest in 5 years as ₹ 3,125 produce in 3 years at 4% per annum?
- 3. Answer any four questions from the following: $5 \times 4 = 20$

(i) If
$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Show that

$$(A+B)^2 \neq A^2 + 2AB + B^2$$

(ii) Solve:

$$\begin{vmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix} = 0$$

(iii) If , x y, z be the p^{th} , q^{th} and r^{th} th term respectively of an A.P., then prove that

$$x(q-r) + y(r-p) + z(p-q) = 0$$

- (iv) Insert 5 geometric mean between 9 and 576.
- (v) Discuss the basic assumptions of linear programming.
- (vi) Compound interest for 2 nd year on a certain sum at 4% per annum is ₹ 25.

Find the C.I. for 3rd year.

(vii) Dinesh finished $\frac{3}{5}$ th of the work in 9 days and the remaining work he finished in 4 days with the assistance of Rajeev. Find in how many days Rajeev alone can finish it.

$$\lim_{x \to 1} \frac{(x^2 - 1)}{\sqrt{3xx + 1} - \sqrt{5 - 1}} = -4$$
OR

Evaluate:

$$\lim_{x \to 1} \frac{\sqrt{1} + 2x - \sqrt{1} - 3x}{x}$$

Answer any four questions from the following: $10 \times 4 = 40$

4. (a) Solve the following system of equation by Cramer's rule :

$$3x + y + 2z = 3$$
$$2x - 3y - z = -3$$
$$x + 2y + z = 4$$

(b) Prove that:

$$\begin{vmatrix} 1+a & b & c \\ a & 1+b & c \\ a & b & 1+c \end{vmatrix} = 1+a+b+c$$

(c) Evaluate:

$$\begin{vmatrix} 2 & -3 \\ 4 & 7 \end{vmatrix} + \begin{vmatrix} -1 & -2 \\ 4 & -6 \end{vmatrix}$$

5. (a) Construct a 3×2 matrix such that

$$aij = \frac{3i}{i+j}$$

(b) If $A = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$, then show that

$$A^2 = 7A - I$$

Where
$$=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- (c) A man buys 8 dozen of mangoes (a) \neq 18 per dozen, 10 dozen of apples (a) 9 per dozen and 4 dozen of bananas (a) \neq 6 per dozen. Represent the quantities bought by row matrix and prices by column matrix and hence find the total cost.
- 6. (a) The sum of three numbers in A.P. is 54 and the product of the two extremes is 275. Find the numbers.
- (b) Find the value of k such that 3k 7, 5k 1, 14k + 2 are in G.P. 2
- (c) If,, are in A.P. and,, are in G.P., prove that,

$$x^b - {}^c y^c - {}^a Z^a - {}^b = 1$$

- 7. (a) The compound interest and simple interest on a certain sum of money at a certain rate for 2 years are respectively at $\stackrel{?}{=}$ 920.95 and $\stackrel{?}{=}$ 900 . Find the rate and the sum. 5
- (b) A person sells 4% stock of ₹ 17,500 and invests the proceeds in 3% stock at $74\frac{7}{8}$. If his income increases by ₹ 17.50 , find the selling price of 4% stock (brokerage being $\frac{1}{8}$ % in each case).
- 8. (a) A true discount on a bill of ₹ 1,01,000 is ₹ 1,000 at 5% p.a. Find how many days prior to the actual due date was the bill discounted.
- (b) Define: 1+1=2

- (i) Dividends
- (ii) Market value of a share
- (c) Which is a better investment-4% stock at 82 or $4\frac{1}{2}$ % stock at 95?
- 9. (a) A person buys an article and sells at a profit of 5%. If he had bought it at 5% less price and sold it for 37 paisa less, he would have gained 10%. Find the original cost price.
- (b) In mixing two types of tea, 2% is wasted. In what ratio tea costing ₹ 60 per kg be mixed with tea costing ₹ 45 per kg, so that by selling the mixture at ₹ 62.50 per kg, there is a gain of 25% on total outlay.

10. If
$$f(x) = \frac{1}{x}$$
,

Show that

$$f(p) - f(q) = f\left(\frac{pq}{q-p}\right)$$

(b) Examine the continuity of the following function at x = 3.

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & \text{if } x \neq 3 \\ 6, & \text{if } x = 3 \end{cases}$$

- (c) Find the
- (i) average revenue function (AR), and
- (ii) marginal revenue function (MR) for the following total revenue function (TR) and evaluate them at = 3.

$$TR = Q^3 - \frac{Q^2}{3} + 27Q$$

11. (a) Find the differential co-efficient of $\frac{1}{x^2}$ using first principle. 5

(b) Find the maximum and minimum

values of
$$2x^3 - 9x^2 + 12x - 1$$
 5.

- (a) Integrate: 2 + 3 = 5
- (i) $\int (3x + 2)^2 dx$

(ii)
$$\int \frac{x^3 + 5x^2 - 4x + 2}{x^2} dx$$

(b) Evaluate; $2\frac{1}{2} + 2\frac{1}{2} = 5$

(b) Evaluate;
$$2\frac{1}{2} + 2\frac{1}{2} = 5$$

C. Hinetice as Jirenotes.

C thetreasure of the confinence of the confinenc

(ii)
$$\int \frac{x^3 + 5x^2 - 4x + 2}{x^2} dx$$
(b) Evaluate; $2\frac{1}{2} + 2\frac{1}{2} = 5$
(i)
$$\int_{1}^{2} \left(\frac{x^2 + 2x + 5}{x}\right) dx$$
(ii)
$$\int_{1}^{4} \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$
-0000

(ii)
$$\int_{1}^{4} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$$

-00000-

Chretieasurende

CHRetifeasurendie

Cilheilleashiren

CHREKKERSHKER

CHRETKERSHIEN

*hetire as like in old